Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction.
نویسندگان
چکیده
Fibroblasts in intact tendons align with stretching direction, but they tend to orient randomly in healing tendons. Therefore, a question arises: Do fibroblast responses to mechanical stretching depend on their orientation? To address this question, human patellar tendon fibroblasts were grown in custom-made silicone dishes that possess microgrooved culture surfaces. The direction of the microgrooves was either parallel or normal to the direction of cyclic uniaxial stretching. Fibroblasts grown in these microgrooves had a polar morphology and oriented along the direction of the microgrooves regardless of the stretching conditions. Tendon fibroblasts expressed higher levels of alpha-smooth muscle actin when they were oriented parallel to the stretching direction than when they were oriented normal to the stretching direction. Also, cyclic stretching of the fibroblasts perpendicular to their orientation induced a higher activity level of secretory phospholipase A(2) compared with stretching of the cells parallel to their orientation. Thus, these results show that fibroblast responses to mechanical stretching depend on cell orientation to the stretching direction.
منابع مشابه
Mechanical stretch-induced changes in cell morphology and mRNA expression of tendon/ligament-associated genes in rat bone-marrow mesenchymal stem cells.
It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mR...
متن کاملBiological effects of cellular stretch on human dermal fibroblasts.
Pathological scars are fibroproliferative skin disorders that are characterised by the accumulation of fibroblasts and collagens. It is increasingly understood that their development and progression may be related to local skin mechanics, such as stretching. The present study evaluated the morphological and functional effects of cellular stretch on normal human dermal fibroblasts and explored t...
متن کاملStretching Induces the Rearrangement of the Periodontal Ligament Cells without Altering the Orientation of Oxytalan Fibers Relative to the Cell Axis in Vitro
The periodontal ligament (PDL) contains oxytalan fibers as well as collagen fibers, which helps it to withstand the mechanical stress to which it is constantly exposed. The oxytalan fibers are produced by PDL fibroblasts. However, the arrangement of PDL fibroblasts and the orientation of oxytalan fibers relative to the fibroblast cell axis have not been investigated under the condition of mecha...
متن کاملInfluence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets.
Mechanical forces play an important role in shaping the organization of the extracellular matrix (ECM) in developing and mature tissues. The resulting organization gives the tissue its unique functional properties. Understanding how mechanical forces influence the alignment of the ECM is important in tissue engineering, where recapitulating the alignment of the native tissue is essential for ap...
متن کاملThe Role of Mechanical Force and ROS in Integrin-Dependent Signals
Cells are exposed to several types of integrin stimuli, which generate responses generally referred to as "integrin signals", but the specific responses to different integrin stimuli are poorly defined. In this study, signals induced by integrin ligation during cell attachment, mechanical force from intracellular contraction, or cell stretching by external force were compared. The elevated phos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 37 4 شماره
صفحات -
تاریخ انتشار 2004